skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grant, Lauren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The nitrido‐ate complex [(PN)2Ti(N){μ2‐K(OEt2)}]2 (1) reductively couples CO and isocyanides in the presence of DME or cryptand, to form rare, five‐coordinate TiII complexes having a linear cumulene motif, [K(L)][(PN)2Ti(NCE)] (E = O, L = Kryptofix222, (2); E = NAd, L = 3 DME, (3); E = NtBu, L = 3 DME, (4); E = NAd, L = Kryptofix222, (5)). Oxidation of 2‐5 with [Fc][OTf] afforded an isostructural TiIII center containing a neutral cumulene [(PN)2Ti(NCE)] (E = O, (6); E = NAd (7), NtBu (8)). Moreover, 1e‐ reduction of 6 and 7 in the presence of cryptand cleanly reformed corresponding discrete TiII complexes 2 and 5, which were further characterized by solution magnetization measurements and high‐ frequency and ‐field EPR (HFEPR) spectroscopy. Furthermore, oxidation of 7 with [Fc*][B(C6F5)4] resulted in a ligand disproportionated TiIV complex having transoid carbodiimides, [(PN)2Ti(NCNAd)2] (9). Comparison of spectroscopic, structural, and computational data for the divalent, trivalent, and tetravalent systems, including their 15N enriched isotopomers demonstrate these cumulenes to decrease in order of backbonding as TiII→TiIII→TiIV and increasing order of p‐donation as TiII→TiIII→TiIV, thus displaying more covalency in TiIII species. Lastly, we show a synthetic cycle whereby complex 1 can deliver an N‐atom to π‐acids. 
    more » « less
  2. null (Ed.)
    The bis(imido) complexes (BDI)Nb(N t Bu) 2 and (BDI)Nb(N t Bu)(NAr) (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate; Ar = 2,6-diisopropylphenyl) were shown to engage in 1,2-addition and [2 + 2] cycloaddition reactions with a wide variety of substrates. Reaction of the bis(imido) complexes with dihydrogen, silanes, and boranes yielded hydrido-amido-imido complexes via 1,2-addition across Nb-imido π-bonds; some of these complexes were shown to further react via insertion of carbon dioxide to give formate-amido-imido products. Similarly, reaction of (BDI)Nb(N t Bu) 2 with tert -butylacetylene yielded an acetylide-amido-imido complex. In contrast to these results, many related mono(imido) Nb BDI complexes do not exhibit 1,2-addition reactivity, suggesting that π-loading plays an important role in activating the Nb–N π-bonds toward addition. The same bis(imido) complexes were also shown to engage in [2 + 2] cycloaddition reactions with oxygen- and sulfur-containing heteroallenes to give carbamate- and thiocarbamate-imido complexes: some of these complexes readily dimerized to give bis-μ-sulfido, bis-μ-iminodicarboxylate, and bis-μ-carbonate complexes. The mononuclear carbamate imido complex (BDI)Nb(NAr)(N( t Bu)CO 2 ) ( 12 ) could be induced to eject tert -butylisocyanate to generate a four-coordinate terminal oxo imido intermediate, which could be trapped as the five-coordinate pyridine or DMAP adduct. The DMAP adducted oxo imido complex (BDI)NbO(NAr)(DMAP) ( 16 ) was shown to engage in 1,2-addition of silanes across the Nb-oxo π-bond; this represents a new reaction pathway in group 5 chemistry. 
    more » « less
  3. Abstract Advancing biologically driven soft robotics and actuators will involve employing different scaffold geometries and cellular constructs to enable a controllable emergence for increased production of force. By using hydrogel scaffolds and muscle tissue, soft biological robotic actuators that are capable of motility have been successfully engineered with varying morphologies. Having the flexibility of altering geometry while ensuring tissue viability can enable advancing functional output from these machines through the implementation of new construction concepts and fabrication approaches. This study reports a forward engineering approach to computationally design the next generation of biological machines via direct numerical simulations. This was subsequently followed by fabrication and characterization of high force producing biological machines. These biological machines show millinewton forces capable of driving locomotion at speeds above 0.5 mm s−1. It is important to note that these results are predicted by computational simulations, ultimately showing excellent agreement of the predictive models and experimental results, further providing the ability to forward design future generations of these biological machines. This study aims to develop the building blocks and modular technologies capable of scaling force and complexity of these devices for applications toward solving real world problems in medicine, environment, and manufacturing. 
    more » « less